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REFINED SOLUTIONS OF EXTERNALLY INDUCED SLOSHING
IN HALF-FULL SPHERICAL CONTAINERS
S. Papaspyrou, D. Valougeorgis, and S. A. Karamanos', A.M.ASCE
Department of Mechanical and Industrial Engineering

University of Thessaly, Volos 38334, Greece

ABSTRACT

A mathematical model is developed for calculating liquid sloshing effects in half-full
spherical containers under arbitrary external excitation. The velocity potential is expressed in a
series form, where each term is the product of a time function and the associated spatial function.
Because of the spherical configuration, the problem is not separable and the associated spatial
functions are non-orthogonal. Application of the boundary conditions results in a system of
ordinary linear differential equations, in the general form of structural dynamics equations of
motion. The system is solved numerically, implementing a typical fourth-order Runge-Kutta
integration scheme. The proposed simple methodology is capable of predicting sloshing effects
in half-full spherical containers under arbitrary external excitation in an accurate manner.
Hydrodynamic pressures and horizontal forces on the wall of a spherical container are calculated
for real earthquake ground motion data. Viscous effects are included in the present formulation
through an appropriate modification of the dynamic free surface condition, and their influence on
the response is examined. Finally, it is shown that for the particular case of harmonic excitation,
the system of ordinary differential equations results in a system of linear algebraic equations,

which yields an elegant semi-analytical solution.
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1. INTRODUCTION

The sloshing problem has been considered as a typical linear eigenvalue problem, which
represents the oscillations of the free surface of an ideal liquid inside a container (Lamb, 1945).
Those free oscillations are described through a velocity potential function satisfying: (a) the
Laplace equation within the fluid, (b) the no-flow condition on the tank wall, and (c) the
kinematic and dynamic free-surface conditions. Considering small-amplitude free oscillations
(i.e. linearized conditions on the free surface), and assuming a harmonic solution, the above
equations result in a typical eigenvalue problem. The solution provides the natural frequencies of
fluid oscillation (sloshing frequencies) and the corresponding sloshing modes, which strongly
depend on the shape of the container. For rectangular and vertical-cylindrical containers the
eigenvalue-sloshing problem can be solved analytically, using separation of variables (Currie,
) 1974), and the corresponding sloshing modes are mutually orthogonal and uncoupled. For other
geometries (e.g. horizontal cylinders or spheres) exact analytical solutions may not be available,
and the use of numerical methods becomes necessary.

Quite often, calculation of sloshing frequencies may not be sufficient in engineering
applications and the response of the liquid container under external excitation is necessary. In
many practical applications in civil, mechanical, aerospace and marine engineering,
hydrodynamic pressures and the corresponding forces due to sloshing need to be calculated. In
particular, earthquake-induced sloshing has been recognized as an important issue towards
safeguarding the structural integrity of liquid storage tanks, and has been the subject of numerous
analytical, numerical and experimental works. The pioneering works of Housner (1957, 1963)

presented a solution for the hydrodynamic effects in non-deformable vertical cylinders and
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rectangles. The solution was split in two parts, namely the “impulsive” part and the “convective”
part. This concept constitutes the basis for the API 650 standard provisions (Appendix E) for
vertical cylindrical tanks (American Petroleum Institute, 2000). Veletsos (1974), Veletsos &
Yang (1977), Haroun & Housner (1981), Haroun (1983), have extended this formulation to
include the effects of shell deformation, and its interaction with hydrodynamic effects. More
recently, the case of uplifting of unanchored tanks as well as soil-structure interaction effects
have been studied extensively, in the papers by Peek (1988), Natsiavas (1988), Veletsos & Tang
(1990), Malhotra (1995). Notable contributions on the seismic response of anchored and
unanchored liquid storage tanks have been presented by Fisher (1979), Rammerstorfer et al.
(1988), Fischer et al. (1991), with particular emphasis on design implications. Apparently, those
papers constitute the basis for the seismic design provisions concerning vertical cylindrical tanks
in Eurocode 8 (EC8 — part 4.3 — Annex A). In addition to the numerous analytical/numerical
works, notable experimental contributions on this subject have been reported [Niwa & Clough
(1982), Manos & Clough (1982)]. The reader is referred to the review paper of Rammerstorfer et
al. (1990) for a thorough presentation and a concise literature review of liquid storage tank
response under seismic loads, including fluid-structure and soil-structure interaction effects. In a
recent publication, Ibrahim et al. (2001) have reviewed a large number of publications on
sloshing dynamics, addressing special issues such as nonlinear sloshing, equivalent mechanical
models, stochastic excitation, deformable wall effects, hydrodynamic impact, or sloshing in low
gravitation fields.

The above studies have been concentrated almost exclusively on vertical-cylindrical tanks,
as well as on rectangular tanks. On the other hand, spherical vessels have significant applications
(e.g. in chemical plants and refineries), and their sloshing response under strong seismic events is
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of particular interest for a reliable estimate of the total horizontal force and the corresponding
overturning moment. It is interesting to note that the amount of theoretical and numerical works
concerﬁing sloshing in spherical containers is quite limited, when compared with the large
number of works in vertical cylinders. Furthermore, 'in current design practice, the recent
provisions of Eurocode 8 (Annex A of EC8, Part 4) are particularly detailed concerning sloshing
hydrodynamic effects due to earthquake excitation in rectangles and vertical cylinders, whereas
the case of spherical vessel is not considered. Similarly, the API provisions for the seismic
design of liquid storage tanks (Appendix E of API standard 650) refer exclusively to vertical
cylinders.

Budiansky (1960) has examined sloshing effects in circular canals and spheres, using space
transformations to map the initial circular or spherical region to a more convenient plane region.
The flow field was described by a set of integral equations, which was solved using a Galerkin-
type solution. Numerical values of modal frequencies and hydrodynamic forces were presented
for a spherical container. Moiseev & Petrov (1966) described the application of Ritz variational
method for the numerical calculation of sloshing frequencies in vessels of various geometries,
including the case of a spherical container. Fox & Kuttler (1981, 1983) obtained upper and lower
bounds for the values of sloshing frequencies in a semi-circular canal (the two-dimensional
analogue of a spherical tank) using conformal mapping and the method of intermediate
problems. However, most of the applied conformal mapping techniques require complicated
transformations, while the complex variable methods are not applicable in full three-dimensional
problems. Mclver (1989) considered horizontal cylindrical and spherical containers, filled up to
an arbitrary height. Choosing appropriate coordinate systems, so that the container walls and the
free surface coincide with coordinate lines or surfaces, Mclver reformulated the eigenvalue-
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sloshing problem in terms of integral equations, which were solved numerically. More recently,
Mclver & Mclver (1993) presented simple analytical methods to obtain upper and lower bounds
of sloshing frequencies in horizontal cylinders, which were found to be in good agreement with
the results from a boundary element numerical solution.

Generally, the analysis of sloshing in spherical vessels filled up to an arbitrary height
requires a numerical solution. However, for the particular case of a half-full sphere it is possible
to develop an analytical solution. Evans & Linton (1993) presented a series-type (semi-
analytical) solution of the eigenvalue-sloshing problem in hemispherical containers, minimizing
the computational effort. Assuming a harmonic solution with respect to time, the velocity
potential was expanded in terms of non-orthogonal bounded harmonic spatial functions.
Application of the boundary conditions on the tank wall and the free surface resulted in a
homogeneous system of algebraic equations, which was solved in terms of the sloshing
frequencies.

The present work is aimed at calculating sloshing effects in half-full spherical containers due
to external excitation, with particular emphasis on seismic ground motion, extending the
analytical formulation proposed by Evans & Linton (1993). In addition, the present formulation
takes into account viscous effects through a simplified approach proposed elsewhere (Faltinsen,
1978). The well-known separation-of-variables approach, which works effectively in vertical
cylindrical and rectangular configurations, cannot be applied successfully in spherical vessels,
since the governing equation with the associated boundary conditions are not separable. The
velocity potential is expanded in bounded series in terms of arbitrary time functions and their
associated non-orthogonal spatial functions. Moreover, the solution is divided in two parts as
suggested by Isaacson & Subbiach (1991): (a) a “uniform motion” part, trivially obtained,
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representing the liquid motion which follows the external excitation source, and (b) a part related
to sloshing, representing the relative fluid motion within the container. Using the above solution
methodology, the problem reduces to a system of ordinary linear differential equations, which is
solved numerically. Subsequently, it is possible to compute hydrodynamic pressures and the
corresponding sloshing forces in half-full spherical containers under arbitrary external excitation
in a simple and efficient manner.

The present paper is organized in the following manner. In Section 2, the mathematical
formulation and the solution methodology of the half-full sphere response problem under
external excitation is described in detail. The important case of harmonic excitation is studied
separately in Section 3, and explicit expressions for the hydrodynamic pressures and forces on
the vessel are derived. Numerical results are presented in Section 4. The validity and the
accuracy of the proposed methodology in terms of the sloshing frequency values are examined
first. Subsequently, semi-analytical results for harmonic excitation are derived and, finally,
numerical results for half-full spherical containers under arbitrary excitation are presented. In

Section 3, a brief summary and some important concluding remarks are stated.

2. THEORETICAL FORMULATION AND SOLUTION

In the present analysis of half-full spherical tanks, the flow is considered incompressible and

irrotational. The vessel wall is assumed rigid (non-deformable), since in most applications, spherical

vessels are rather thick to resist high levels of internal pressure. The total velocity potential

O=D(x,y,z,t) satisfies the Laplace equation within the fluid domain, subjected to the free-surface

dynamic and kinematic boundary conditions, and the kinematic condition at the container wall. The

container undergoes an arbitrary motion in the direction of a specific axis (say the x axis) with
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displacement X(t), as shown in Figure 1. The acceleration of the external excitation X(t) and the

resulting hydrodynamic force F(t) may be considered as the input and the output of the system,
respectively. The amplitude of the external excitation and the resulting free surface elevation
(sloshing wave) are assumed to be sufficiently small to allow linearization of the problem. The

formulation results in a system of second order ordinary linear differential equations.

2.1 Half-full spherical container under external excitation

The fluid is contained in a rigid spherical vessel of radius R. The vessel is half full, the
origin of the coordinate system xyz, is set at the center of the sphere, which is also the center of
the free surface disk and the y-axis points vertically downwards. The complete configuration of
the system is shown in Figure 1, and the geometry is described in terms of the spherical

coordinates

X =rsind cosy, (la)

y =rcosf (1b)
and

z =rsinb siny (lc)

It is assumed that the fluid inside the container is inviscid and the flow can be described by a

velocity potential function (I)(r,e, v, t), which satisfies Laplace equation

V) ) P T N o
or or ) sinB 00 00 ) sin‘6 oy

r<R,0<0<m2,0<y<2n.
The velocity potential is also subjected to the linearized dynamic and kinematic free surface

conditions



oo

2 =0, at0=m2, r<R,0<y<2r (32)
and
19, on_y, at0=n/2, r<R,0<y<2n (3b)
rée ot

respectively, where g is the gravitational constant and n=n(r,y,t) is the free surface elevation.
Finally, the sloshing potential should satisfy the kinematic condition at the hemispherical wall of
the container

%(Bz)'((t)sinecosw, atr=R, 0<0<mw2,0<y<2m. *)
r

Subsequently, the velocity potential ®(r,0,y,t) is decomposed in two parts, as suggested by
[saacson & Subbiach (1991)

O(r,0,y.t) = (r,0,y,t)+¢(r.0,y.t), (5)
where f(r,0,y,t) and o(r,0,y,t) are the “uniform motion” velocity potential and the potential
related to sloshing respectively. The velocity potential f corresponds to a rigid body motion of
the fluid, which follows exactly the motion of the external excitation source, and the velocity

potential ¢ represents the relative motion of the fluid particles within the container due to

sloshing.

2.2 Viscous damping

To account for viscous effects in a real fluid, it is assumed that the dissipation occurs only at
the free surface. This simplification, suggested elsewhere (Faltinsen, 1978), enables the use of
the inviscid potential theory and the introduction of a dissipation mechanism through a slight

modification of the dynamic free surface condition. It is assumed that there exists a force, which
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opposes particle velocity, and this motivates a modification in the dynamic free-surface condition
through the addition of a term proportional to the velocity potential. Although this approach is
quité artificial, it has been considered as a simpie and efficient method to study damped systems
with potential theory (Isaacson & Subbiach, 1991). In the aforementioned works, the damping
term was considered proportional to the total potential @. In the present analysis, this term is
assumed proportional to potential ¢ only. This is justified from the consideration that damping
depends on the relative motion of fluid particles (represented by ), and not by the total fluid
motion (represented by ®). Based on the above discussion, the linearized dynamic free surface

condition is written as follows

%+V(p—gn=0, at8=m/2, r<R,0<y<2n, (6)

where v is the viscosity coefficient. Combination of Equations (3b) and (6) leads to the following

mixed boundary condition

2
00 ,, 22,89 4 ae=w2,r<R,0<y<2m. (7

2.3 General solution for half-full spherical containers

The externally induced sloshing problem consists of the governing Laplace equation (2), and
the boundary conditions (4) and (7). Assuming arbitrary motion of the external source in the x
direction (Figure 1) and decomposition of the total potential in the form of Equation (5), the

uniform motion potential f is taken as
f (r,O,\y,t)= f(x,t) =X(t) x =X(t) r sinb cosy (8)

which satisfies the Laplace equation (2), and the following conditions



X xp, Lo and Lo, )
0x 0z oy

Thus, the unknown potential ¢ associated with sloshing, should satisfy the Laplace equation (2)

within the fluid region and the following boundary conditions:

2

09,,90 .8 %

= p ae=-')'('(t)rc05\|1, atf=mn2,r<R,0<y<2n (10)
r

and

‘Z—(":o, atr=R,0<0<n/2,0<y<2n. ~(11)
T

A solution for the unknown function ¢ is considered in a series form as

orowD=> q,00,(noy;m), r<R,0<0<m2, 0<y<2n. (12)

where q,(t) are unknown arbitrary time functions, and ¢, are the corresponding spatial
functions obtained from the general solution of Laplace equation in spherical coordinates, given
by

¢, (r,0,y;m)=P"(cosB) r" cos(my), r<R, 0<0<7w/2, 0<y<2n. (13)
In the above expression, P"(cos8) (with m <n and n=0,1,2,3...), are the associated Legendre

functions (Kreyszig, 1999). Considering the form of the combined free surface condition,
expressed in Equation (10), it can be readily shown that only the terms corresponding to m=1 are
nonzero, whereas all other terms vanish. Furthermore, as suggested by Evans & Linton (1993),

the expression for the unknown potential is rewritten in the form

O0.0) = 3| 4yt (1) Py, (c0s0) £+, (1) Py, (cos) ™" ] cosy (14)
n=l
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separating odd and even terms of the series. Substituting Equation (14) into Equation (10) the

following relations are obtained:

1 . 1
q,(= 3 [4,®)+v ¢,0)] o X, (15a)
and
_ l . .
q,, ()= anie (A0t OV 45, (D], forn>1. (15b)

Equations (15) are substituted back into Equation (14) and then the boundary condition at the

container wall, expressed by Equation (11), is applied to yield

32 Rt cosd) (041 -2
2n+1

R . In-
M+l g EPZ',, (cos6) q,,, (1) +(2n ~1) P,, ,(cosb) q,, , (t)} R
n=|]

Ii
(S )

gEP; (cosB) X(t) . (16)

Subsequently, applying the following integral operator on Equation (16)

1
I, = j ------ Pl (w) dp, s=1,2,3,... a7
and conducting some mathematical manipulations, the following infinite system of second-order

ordinary linear differential equations is obtained:
M] {a}+[C] {a}+[K] ta={r}X. (18)
In the above system, [M] is a non-symmetric square matrix with elements

2n RZn-lI
M, = [PL@PLwde,  n=123,.. and s=123... (1)
2n+1 g ¢ i

[C] is a square matrix proportional to [M]



[C]=v[M] (19b)

[K] is a diagonal matrix with elements
I
K_=@n-1)R™ IPz'n_l(p) P} () du n=1,2,3,... (19¢)
; .

{y} is a vector with elements

2R
3g

i

1
Vo= [P0 Pi(w) du 5=12,3,... (194)
0

and {q} is the unknown vector with components q,, _,(t), n=1,2,... Solution of Equations (18)

can be performed through a typical time marching numerical scheme, and leads to the calculation
of the arbitrary time functions q,,_, (t) and their first and second derivatives.

The system of Equations (18) is in the regular form of structural dynamics equations of
motion. More specifically, {q} is the vector of unknown generalized coordinates, [M], [C] and
[K] may be considered as the mass, damping and stiffness matrices of the system, respectively,
and {y} is the vector expressing the contribution (participation) of external excitation on the
dynamic equilibrium.

Upon numerical solution of the truncated system of ordinary differential equations in terms

of q,,,(t), functions q,,(t) should be determined, so that the potential ¢ associated with

sloshing is completely defined. To calculate functions qun(t), it is straightforward to use

Equations (15), which express qan(t) in terms of §,,,(t), q,,,(t) and the acceleration of the

external excitation X(t). Implications may arise when the second derivatives of qa(t) are
calculated, to compute hydrodynamic pressure and forces. This requires calculation of the fourth

derivatives of q,,,(t) and X(t). In the case of seismic input, {,,,(t)and X(t) are irregular
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functions, in the form of a ground acceleration seismic record, containing very sharp variations
within very small time intervals and their numerical differentiation may lead to erroneous results.
It is possible to avoid such a numerical difficulty, under the observation that vector {y} consists
of the same elements with the first column of matfix [M]. Therefore, Equations (18) can be

written as follows

[M]({Q}+v{a})+[K]{a}=0 20)
where
—éix')"(_
d;
{Q}=! 4, Q1)
4,
L

On the other hand, conditions (15) can be written
{@}=[p]({Q} +v{a}) 22)
where, {q} is a vector with components qzn(t), and [D] is a diagonal matrix with elements

|
D =
kk (2k+1)g

, k=1,2,3,... (23)

Combining Equations (20) and (22), vector {a} is calculated as follows

{@}=-[p] [M]'[K]{g} (24)
so that functions gxq(t) are directly expressed in terms of functions gzn.1(t). Thus, the double

differentiation of functions qza(t) becomes a trivial procedure.
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2.4 Hydrodynamic pressures and forces
Once the velocity potential ¢ associated with sloshing is calculated, the hydrodynamic
pressure at any location can be computed from the linearized Bernoulli equation

od of 0 :
P(LO.)=~p —==-p —-=p E(" (25)

On the right hand side of Equation (25) the first term is due to the uniform motion potential,
while the second term refers to sloshing effects. The total horizontal force acting on the container

is obtained by an appropriate integration of the pressure on the hemispherical wall as

F= j P(R,0,y.t) (e, -n )dA, (26)

where A is the hemispherical surface, e, is the unit vector in the x direction, and n the outer unit
vector normal to A. The total force can be also expressed as a summation of the “uniform

motion” force
of
F=—p|— (e.-n )dA 27a

or, using Equation (8),
. 2 .. ..
F,=-pR* X [ [sin’0 cos’y do d\y=—( 370 R3j X@=-M X (27b)
0 0

where M,, is the total liquid mass of the half-full container, and the force associated with

sloshing is
99
Fo=—p|—= (e ,-n)dA 28a
A pAf = (en) (282)
or, using Equation (14),

FSZ—pR3nZ R™ {0 () Y5 PR () Y, - (28b)

n=|
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where
/2
Y, = j P! (cos8) sin’6 do, s=1,2,3,...... (29)
0
Since the pressure is always normal to the wall of the container, the total hydrodynamic force
direction always passes through the center of the sphere.
It is interesting to note that the only numerical work required to obtain the solution is

related to the solution of a truncated system of ordinary linear differential equations. As shown in

Section 4, a relatively small truncation size N (n<N) is adequate to obtain good results.

2.5 A simplified formulation
It is possible to develop a simplified version of the above formulation considering only the

first term (N=1) of the series expansion of the potential ¢ associated with sloshing in Equation

(14). In this case, ¢ is assumed equal to
o(r,0,y,0) =[ql r P!(cos8) + g, r’ P} (cose)] cosy . (30)

Applying the boundary conditions on the free surface and the container wall, the final equation,

analogous to Equations (18), is equal to

. ) 4 .
g, +v qﬁ(;}%—] q =X. G1)

The other unknown function q; is defined by the following equation, analogous to Equation

(15a),
1 r.. .o
qz—gg[(]1+v qx'X]> (32)
which results in
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_ [ 4 A
q, = (9Rj q> (33)

an expression analogous to Equation (24).
It is possible to write Equation (31) in the form of a linear oscillator with viscous damping:
4, +28,044, Y05 q, =X (34)

where

ws=/4g/3R (35)
is the circular (undamped) frequency and

E=V20 (36)
is the damping ratio. Equation (36) can be employed to estimate the value of viscosity coefficient
v, if the damping ratio &s is somehow estimated (e.g. experimentally). Regarding the ws value, it
is an approximation of the first sloshing frequency i, since only one term of the series
expansion is employed (N=1). The dependence of sloshing frequency values on the truncation
size N will be discussed in detail in Section 4.

The hydrodynamic pressure on the wall is calculated from Equation (25) and the .

corresponding force becomes

F=F,+F=- M X + I\é §,=- M, X +Mq §, (37)

In the above equation, Ms expresses the part of liquid mass associated with sloshing motion. The
form of Equations (34) and (37) motivates the development of a simple mechanical model to

describe the sloshing response of a half-full spherical container. Setting

u1=(-q1)+X (38)
u,=X
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it is straightforward to re-write Equations (34) and (37) in the following manner
Mg, + vM; (0, =1, )+ oF Mg (u, —u,) =0 (39)

F=-M; ul—(Mw —Ms)u2=~ 2w ul_Twuz (40)

Based on Equations (39) and (40), the proposed mechanical model is shown in Figure 2. In this
model, u, represents the motion of the external source, and u; expresses the motion of the liquid
mass associated with sloshing. In addition, the total liquid mass M, is split in two equal parts m;
and my, which correspond to u; and u,, and express the so-called “convective” (or “sloshing™)

mass and “impulsive” motion respectively, a concept introduced by Housner (1957).

3. SOLUTION FOR HARMONIC EXCITATION
The theoretical formulation for arbitrary excitation is significantly simplified when the rigid
container undergoes a harmonic motion
Xt =Ue™, (41)
where U is the velocity amplitude, and ® is the angular frequency of the external excitation ‘

source. Assuming steady-state conditions, the total velocity potential ®(x,y,z,t) is written as

D(x,y,z,1) =[f(x) + o(x,y,2)] €™, (42)
where
f(x) = U x = Ursind cosy (43)
and
(p(x,y,z)=i [aml P, (cosB) r™'+a, P, (cosb) rz"} cosy (44)
=



are the uniform motion potential and the potential related to sloshing respectively. Equation (44)
can be readily obtained from Equation (14) assuming harmonic functions for q,(t)

q,(t)=a, e (45)

More specifically, applying the corresponding boundary conditions, the following relations are

obtained [compare with Equations (15a) and (15b)]

2+' 2
2=t [OTVO1, 1Oy (462)
3 g 3g
and
24
e — LS n>l (46b)
(2n+1) g

Consequently, the following infinite system of linear algebraic equations is obtained
(- [M]-ivo[M]+[K]) {a}=-0" U {r}. (47)
In the above system, the square matrix [M], the diagonal matrix [K] and the vector {y} are given

by Equations (19a), (19¢) and (19d) respectively, and {a} is the unknown vector with

components a, ,, n=1,2,3... Once the system is solved and the unknown coefficients are -

computed, the velocity potential ¢ is determined from Equation (44) using Equations (46).
Furthermore, the hydrodynamic pressures and the force acting on the container can be computed
from Equations (25) and (26) respectively. It is interesting to note that in the case of harmonic
excitation the only computational work required is the solution of a truncated linear algebraic
system. Note that when U =0 and v =0, the system of algebraic Equations (47) is reduced to a
homogeneous system, which is identical to the one obtained by Evans & Linton (1993).

An estimate of the externally induced sloshing effects on the overall response can be

obtained from the computation of the added mass coefficient, defined as follows:
18



_Re| £5
Ca—Re[FU } (48)

On the other hand, the dimensionless damping coefficient

| 5 :
CV—ImL:U } (49)

provides a measure of the dissipation mechanisms when viscous effects are included (Isaacson &
Subbiach, 1991) In the above expressions, Re[ ] and Im[ ] denote the real and the imaginary part
of the Fs/Fy ratio respectively.

It is possible to obtain an elegant analytical solution, if the sloshing potential (p(x,y,z) is

approximated only with the first term (N=1) of the series expansion. The system of Equations

(47) now reduces to a scalar equation in terms of the unknown coefficient a,. The remaining
unknown coefficient a, is computed from Equation (46a). The resulting expressions are

substituted into Equation (44) to obtain the following closed-form expression for the velocity

potential ¢

Uw?

cp(r,e,\y,t)=————[1-£cosej r sin® cosy e™' . (50)
(4g 2j . 3R
—= - |-ivo

3R

Furthermore, the force Fg corresponding to sloshing becomes

2
o ot

L NS (51)
(4—g—m2j-ivw
3R

Finally, the added mass coefficient and the dimensionless damping coefficient are

Fs=i(DU—;—7rR3p



o(3)

_1 WM )
3R
and
el v 1 2% (50)

1 1
| 2(4_g'w2)2+(vc0)2 2(192) + (20,
3R

respectively, where A=w/ws is the ratio of the external frequency over the natural frequency of

the oscillator.

4. NUMERICAL RESULTS AND DISCUSSION

The numerical results presented in this section are based on the solution of Equations (47)
and (18) for the cases of harmonic and arbitrary excitation respectively. The convergence of the
solution is always tested, increasing the truncation size of the expansion, so that accurate results
up to certain significant figures are obtained. In all cases analyzed, despite the fact that the series

solution is expressed in terms of non-orthogonal functions, the convergence of the solution is -

rapid.

4.1 Sloshing frequencies

To establish some confidence in the present formulation the eigenvalue problem is
considered first, assuming no external excitation (X(t)=0). The convergence rate and the

expected accuracy of the eigenvalue solution are demonstrated numerically, increasing the value

of truncation size N. In Figure 3 the variation of the first three eigenvalues o), w; and 3, in
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terms of the truncation size N for zero dissipation (v =0) is shown. The results indicate that the

convergence rate is quite rapid. Furthermore, faster convergence is obtained in lower sloshing
frequencies. The required truncation size N to obtain accurate results up to three significant
figures for , ®; and m3 is N=3, N=8 and N=12 respéctively. It is interesting to note that the ws
value is 3.617 [derived analytically Equation (35)], offers a reasonable estimate of the converged
value of the first eigenfrequency w (3.912). It is noted that the converged ©i, 2 and o3 values
from the present analysis are identical to those reported by Evans & Linton (1993). It is also
interesting to note that the value of @, is in very good agreement witﬂ experimental results from
unpublished tests conducted by Lockheed Missile Systems Division, as reported by Budiansky
(1960).

When damping is present (v # 0) the eigenvalues of the system become complex because of
energy dissipation effects. The convergence of the complex eigenfrequencies i, ®; and w; of the
damped system is similar to the corresponding eigenfrequencies of the undamped system. Some
typical results for v=0.72 are shown in Figure 4, where the convergence of the real and imaginary
parts of the first and the second sloshing frequency is demonstrated.

It should be underlined that the sloshing frequency values in hemispherical containers
depend on the truncation size of the series expansion N, due to the non-orthogonality of the
spatial functions @n(X.y,z) in Equations (12) and (13). On the other hand, when a similar series
solution approach [analogous to Equation (12)] is applied in vertical cylinders or rectangles,
mutually orthogonal functions @n(x,y,z) are employed, so that the corresponding sloshing modes

are uncoupled (Currie, 1974).
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4.2 Hydrodynamic forces under harmonic excitation

The case of harmonic excitation of a half-full sphere is investigated next. The corresponding
results are shown in terms of the added mass coefficient C, and the dimensionless damping
coefficient C,. These coefficients can be used for assessing the effects of sloshing for a wide
range of external source frequencies. The convergence of the C, value is demonstrated for a unit-
radius sphere (R=1) and zero damping (v=0) in Tables la, 1b and lc, for different values of the
truncation size N and for different values of external excitation frequencies (expressed in terms
of w*/g). Each Table refers to a range that includes one of the first three natural frequencies of the
system, so that the convergence of C, is examined in the vicinity of the natural frequencies. In
the majority of the cases analyzed, the results converge up to three significant figures for N <10.
As expected, a larger truncation size N is required when the external frequency approaches each
of the resonant frequencies of the system.

Subsequently, the added mass coefficient C, and the dimensionless damping coefficient C,

are plotted as functions of the external excitation frequency (w’/g) in Figures 5 and 6

respectively for three different values of the damping parameter v equal to 0, 0.36 and 0.72 .
(R=1, g=9.81). According to Equation (36), the three values of v correspond to 0%, 5% and 10%
values of damping ratio &s respectively. Figure 5 shows that for the case of zero damping, the
response is characterized by large increases in the added mass coefficient C, in the vicinity of

resonant frequencies. There is a sign reversal in C, at each resonant frequency. When C, <0 the

sloshing force Fs opposes the “uniform motion™ force Fy resulting in a reduction of the total
force amplitude. The extreme values of the added mass coefficient close to the resonant
frequencies are significantly reduced when damping is present, and the resonant effect of the

higher natural frequencies almost disappears. The large values of C, for a wide range of
22



excitation frequencies indicate the significant effects of hydrodynamic sloshing on the overall
response. Figure 6 presents the corresponding results for the dimensionless damping coefficient

C,. The C, value exhibits a peak near the first resonant frequency, and much smaller peaks for

the higher resonant frequencies. When the damping parameter value is increased, the peaks

become smaller and smoother.

4.3 Results for earthquake ground motion

The response of hemispherical liquid containers under earthquaké excitation is of particular
importance for the seismic analysis of spherical pressure vessels used in refineries and
petrochemical industries. In the present paper, the seismic ground motion occurred in Kozani,
Greece, in 1995, is considered (Figure 7). The linear system of ordinary differential equations is
integrated in time by implementing a fourth-order Runge-Kutta scheme in Matlab programming.
Following a short parametric study, the time step At is chosen equal to 0.005 sec.

The dependence of the value of the maximum total force Fmax on the truncation size N is
indicated in Table 2. The results indicate that consideration of sloshing in the analysis has a very
significant effect on the maximum value of the total force Fmax. It is also shown that
consideration of few terms of the series solution (e.g. N=2) is adequate to provide quite accurate
results in terms of the Fy, value, for engineering purposes.

Figures 8, 9 and 10 show the variation of the uniform force Fy, the force associate with
sloshing Fs and the total force F respectively, for a half-full sphere subjected to the Kozani
earthquake and for zero damping (v=0). The sphere has a radius R equal to 10 meters, and
contains a liquid of density p equal to 1000 kgr/m’ (g=9.81m/sec’). A truncation size N equal to

2 is considered in this analysis. The results show that the maximum value of the uniform motion
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force Fumax is significantly larger than the maximum value of the total force F..x and that
sloshing effects result in a reduction of the total hydrodynamic force. The fact that the dominant
earthquake frequencies are significantly larger than the sloshing frequencies offers a reasonable
explanation for the beneficial effect of sloshing. More specifically, under these conditions the
sloshing force Fs opposes the uniform motion force Fy, and, therefore, the total force is reduced.

Figure 11 shows the half-full vessel response in terms of the sloshing force under the Kozani
earthquake, for 10% damping (the value of v is chosen equal to 0.228, so that £5=10%). Due to
the high values of dominant earthquake frequencies as opposed to the lolw values of the sloshing
frequencies, the sloshing force Fspex is found equal to 2.402 MN. Comparison with the
corresponding maximum sloshing force obtained from the analysis of the undamped system
(2.408 MN) indicates that the maximum sloshing force is almost unaffected by the presence of
damping.

A more detailed presentation of damping effects is demonstrated in Figures 12 and 13, where
the time history of the generalized coordinates q;(t) and qs(t) for zero damping (v=0) and for
10% damping (v=0.228) is shown. The presence of damping results in a significant attenuation of

the q(t) and qa(t) values.

5. Conclusions

A mathematical model is developed for externally induced liquid sloshing in half-full
spherical containers. The velocity potential is split in two parts, a “uniform motion” potential
(trivially obtained) and a potential associate with sloshing. In this configuration, the problem
formulation is not separable and the general solution of the sloshing potential is written as a
series expansion of arbitrary time functions and its associated non-orthogonal spatial functions.
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Furthermore, viscous damping effects can be taken into consideration through an appropriate
modification of the dynamic free surface boundary condition. The formulation reduces in a
system of linear differential equations, which is solved numerically.

The present formulation enables the prediction 6f sloshing effects in hemispherical liquid
containers under any form of external excitation, in a simple and efficient manner. The problem
is significantly simplified if only the first term of the series is considered, and a mechanical
model is proposed to describe sloshing response. For the particular case of harmonic external
source, closed-from expressions for the sloshing potential and the slosﬁing force are obtained.

A numerical investigation of convergence is conducted to determine the sensitivity of results
on the truncation size of the series solution. It is found that higher sloshing frequencies require a
larger truncation size to achieve convergence. In the case of harmonic excitation, the results are
expressed in terms of the added force coefficient and the dimensionless damping coefficient, and
indicate that convergence is less rapid in the vicinity of resonant frequencies, and that the
presence of damping diminishes resonant effects.

Subsequently, the response of a spherical vessel subjected to a real seismic event is
examined, and the total horizontal force acting on the container is calculated. The results indicate
that sloshing has a significant effect on the value of the total force. On the other hand, the
numerical results demonstrate that few sloshing terms in the series solution are adequate so that
very good results are obtained. It is also found that consideration of sloshing results in a
reduction of the total force with respect to the “uniform motion” force, because the dominant
earthquake frequencies are significantly higher than the sloshing frequencies. For the same
reason, the effects of viscous damping have an insignificant effect on the maximum value of the
sloshing force.
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Table 1a: Convergence of C, versus N (v=0, R=1). The converged value of w;/g is 1.5601.

Table 1b

Table 1c: Convergence of C, versus N (v=0, R=1). The converged value of w;/g is 8.5040.

/g
N 1 1.3 1.6 1.9
1 1.5000 | 19.500 | -3.0000 | -1.6764
2 1.0516 | 2.8712 |--53.400 | -3.9075
3 1.0476 | 2.9580 | -20.543 | -3.1687
4 1.0430 | 2.9268 | -22.199 | -3.2180
5 1.0410 | 2.9160 | -22.644 | -3.2228
10 1.0393 | 2.9044 | -23.176 | -3.2299
15 1.0391 | 2.9031 | -23.241 | -3.2307
20 1.0390 | 2.9027 | -23.254 | -3.2309

/g
N 4.8 5.1 5.4 5.7

] -0.6923 | -0.6769 | -0.6639 | -0.6526
2 -0.7440 | -0.7350 | -0.7258 | -0.7071
3 -0.7588 | -0.7467 | -0.7378 | -0.7304
4 -0.7950 | -0.7816 | -0.7668 | -0.7537
5 -0.7357 | -0.6948 | -0.6926 | -0.7087
10 -0.7049 | -0.4008 | -1.4348 | -0.9841
15 -0.7050 | -0.4030 | -1.4375 | -0.9840
20 -0.7050 | -0.4037 | -1.4383 | -0.9839

: Convergence of C, versus N (v=0, R=

1). The converged value of w3/g is 5.2753.

o/g
N 8.1 8.4 8.7 9.0

1 -0.5985 | -0.5943 | -0.5904 | -0.5869
2 -0.6665 | -0.6621 | -0.6581 | -0.6544
3 -0.6881 | -0.6841 | -0.6803 | -0.6768
4 -0.6986 | -0.6946 | -0.6908 | -0.6873
5 -0.7049 | -0.7010 | -0.6972 | -0.6937
10 -0.6871 | -0.6255 | -0.5747 | -0.6247
15 -0.6800 | -0.4433 | -0.9023 | -0.7970
20 -0.6801 | -0.4450 | -0.9023 | -0.7969




F (max) [MN]
4.365
2.201
1.958
1.874
1.870

Alw|o|—lo|Z

Table 2: Dependence of the maximum total force value (Fra) in terms of the truncation
size N, (undamped system).
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Figure 1: Configuration of half-full spherical container.
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m2=MW/ 2

Figure 2: Mechanical model based on the simplified formulation (N=1).
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Figure 3: Variation of the first three eigenfrequencies with respect to the
truncation size N for v=0, (R=1, g=9.81).
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Abstract. A mathematical model is developed for sloshing effects in half-full horizontal-cylindrical vessel
containing viscous liquid, under arbitrary external excitation. The velocity potential is expressed in a series
form, where each term is the product of a time function and the associated spatial function. In this configuration,
the problem is not separable and the associated spatial functions are non-orthogonal. Application of the
boundary conditions results in a system of ordinary linear differential equations, which are solved numerically.
The motion of a real liquid gives rise to energy dissipation, which is modeled through an appropriate
modification of the dynamic free-surface condition. Hydrodynamic pressures and horizontal forces on the wall of
a horizontal cylindrical container are calculated for harmonic excitation and for a real seismic motion event.

1. INTRODUCTION

The sloshing problem has been considered as a typical linear ei§envalue problem, which represents the
oscillations of the free surface of an ideal liquid inside a container™. Those free oscillations are described
through a velocity potential function satisfying: (a) the Laplace equation within the fluid, (b) the kinematic
condition on the tank wall, and (¢) the linearized kinematic and dynamic free-surface conditions for small
amplitude oscillations. The solution provides the natural frequencies of fluid oscillation (sloshing frequencies)
and the corresponding sloshing modes. The solution strongly depends on the shape of the container. For
rectangular and vertical-cylindrical containers the sloshing problem can be solved analytically, using separation
of variables®, and the corresponding sloshing modes are mutually orthogonal and uncoupled. For other
geometries (e.g. horizontal cylinders or spheresm]) exact analytical solutions may not be available, and the use
of numerical methods becomes necessary.

Budiansky'"! has examined sloshing effects in circular canals and spheres, numerical values of modal
frequencies and hydrodynamic forces were presented for a circular canal and spherical container. Moiseev &
Petrov!'? described the application of Ritz variational method for the numerical calculation of sloshing
frequencies in vessels of various geometries, including the case of a horizontal cylindrical and spherical
container. Fox & Kuttler™ ® obtained upper and lower bounds for the values of sloshing frequencies in a semi-
circular canal (the two-dimensional analogue of a spherical tank) using conformal mapping and the method of
intermediate problems. Mclver' considered horizontal cylindrical and spherical containers, filled up to an
arbitrary height, reformulating the eigenvalue-sloshing problem in terms of integral equations, which were
solved numerically. More recently, McIver & Mclver!""! presented simple analytical methods to obtain upper and
lower bounds of sloshing frequencies in horizontal cylinders.

Generally, the analysis of sloshing in horizontal cylindrical and spherical vessels filled up to an arbitrary
height requires a numerical solution. However, for the particular case of a half-full horizontal cylinder and
sphere it is possible to develop an analytical solution. Evans & Linton™ presented a series-type (semi-analytical)
solution of the eigenvalue-sloshing problem in hemispherical containers, expanding the velocity potential in
terms of non-orthogonal bounded harmonic spatial functions.

The present work is aimed at calculating sloshing effects in half-full horizontal cylindrical containers due to
external excitation, extending the analytical formulation proposed by Evans & Linton™. Moreover the solution is
divided in two parts as suggested by Isaacson & Subbiach™: (a) a “uniform motion” part, trivially obtained,
representing the liquid motion which follows the external excitation source, and (b) a part related to sloshing,
representing the relative fluid motion within the container. In addition, the present formulation takes into account
viscous effects through a simplified approach proposed elsewhere!®. The velocity potential is expanded in
bounded series in terms of arbitrary time functions and their associated non-orthogonal spatial functions. The
problem reduces to a system of ordinary linear differential equations, which is solved numerically. Subsequently,
hydrodynamic pressures and the corresponding sloshing forces are computed in a simple and efficient manner. A
similar formulation has been developed recently for spherical vessels!'”.
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2. THEORETICAL FORMULATION AND SOLUTION

The fluid is contained in a horizontal cylindrical vessel of radius R and the vessel wall is assumed rigid
(non-deformable). The vessel is half full with the y-axis of the coordinate system xyz pointing vertically
downwards (Figure 1). The geometry is described in terms of the cylindrical coordinates T, 8, z. The container
undergoes an arbitrary motion in the direction of a specific axis (say the x axis) with displacement X(t), as
shown in Figure 1. The amplitude of the external excitation and the resulting free surface elevation are assumed
to be sufficiently small to allow linearization of the problem.

It is assumed that the fluid inside the container is inviscid and the flow can be described by a velocity

potential function (I)(r,G,Z,t), which satisfies Laplace equation within the fluid volume. In addition, the

horizontal cylinder is assumed very long (L>>R) so that the end effects are negligible and all cross-sections
normal to the z-axis have the same response, yielding a two-dimensional problem (independent of z). Therefore,

2
Vo —li( a(I)) A =0 <R, -n/2<0<n/2 ey

= — =
ral o ) oo

The velocity potential is also subjected to the linearized dynamic and kinematic free surface conditions

@ 1
a— -gn:()’ and +—@+é‘1—0 at 0= i‘l[/Z, <R (2)

ot rod ot
respectively, where g is the gravitational constant and n=n(r,8,z,t) is the free surface elevation. Finally, the
sloshing potential should satisfy the kinematic condition at the container wall

% = X(t) sinf, atr=R, -1/2 <0 < /2 &)

Subsequently, @ is decomposed in two parts, as suggested by Isaacson & Subbiach®
D(r,0,t)=£(r,0,t)+o(r0.t), @

where f(r,0,t), ¢(r,8,t) are the “uniform motion” velocity potential and the potential related to sloshing
respectively. The velocity potential f corresponds to a rigid body motion of the fluid, which follows exactly the
motion of the external excitation source, and the velocity potential @ represents the relative motion of the fluid
particles within the container due to sloshing.

To account for viscous effects in a real fluid, it is assumed that the dissipation occurs only at the free surface.
This simplification, suggested elsewhere!®!| enables the introduction of a dissipation mechanism through a slight
modification of the dynamic free surface condition

%w@_gn:o, at 0= 21/2, <R (5)

Combination of Equations (2) and (3) for cylindrical vessel leads to the following mixed boundary condition

aZQ) +Va_([)+_g___ag:

= + 0, at 0= +nt/2, <R 6)
ot~ ot r 00

Assuming motion of the external source in the (transverse) x direction (Figure 1) and decomposition of the total
potential in the form of Equation (4), the uniform motion potential f is taken as

f =X(t) x =X(t) r sin @)
which satisfies the Laplace equation (1), and the kinematic conditions at the container wall. Thus, the unknown

potential @ associated with sloshing, should satisfy the Laplace equation (1) within the fluid region and the
following boundary conditions:
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2
a—(zp+v6—(pi—g—a—(p=-?5{r, 6= +xn/2, r<R 8
ot ot r o6
and
o¢
5—=O, aar=R, -1/2L06<7/2, O<z<L )
r

A solution for the unknown function ¢ is considered in a series form as

¢= 4, ¢,(r,0)=D.q,( 1" cos@mb), r<R,-m2<0<w/?2 (10)

n=m

where q, (t) are unknown arbitrary time functions, and ¢, are the corresponding spatial functions. Furthermore,
as suggested by Evans & Linton® the expression for the unknown potential is rewritten in the form

(p(r,e,t)=2[q2n.l(t) r*! sin(2n-1)0 + q,, () r* sin2n9:] (1
n=1

separating odd and even terms of series. Substituting (11) into (8) the following relations are obtained:

1. . |
qz(t)=g[ql(t) +vq, (1] +§gX(t) , (12a)
and
O L[qm O+v 4, O] for n >1. (12b)
2ng

Equations (12) are substituted back into (11) and then applying the boundary condition at the container wall,
expressed by (9), yields

© 2n-1 2n-1
Z{ R sin2n@ q,, ,(t) +v R sin2nd q,, ,(t) + (2n-1) R*? sin(2n-1)0 an_l}
g g

n=|

(13)
R . .
=—— sin2nB X(t)
g
Subsequently, applying the following integral operator on (13)
2 '
Is=j ...sin(2s-1)0 d8, =123... (14)
0

and conducting some mathematical manipulations, the following infinite system of second-order ordinary linear
differential equation is obtained:

[M] {4} +v[M] {a}+[K] {q)={v}X (1)
where [M] is a non-symmetric square matrix, [K] is a diagonal matrix and {y} is a vector with elements

_ zn(_l)n+s

M R n=1.23...and s=12.3... (162)

sn

2 Lo
n--(s-—
( 2)

G
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K, =(2n-1)ngR™? n=123... (16b)

3 8(_1)5-4-1

s T S=1,2,3... (16¢)
Y 3+ds-4s’

and {q} is the unknown vector with components q2n_l(t), n=1,2,... Solution of (15) can be performed
through a typical time marching numerical scheme, and leads to the calculation of the arbitrary time functions
qQon (t) and their first and second derivatives. Upon numerical solution of the truncated system of ordinary
differential equations in terms of ,, (t), functions (,, (t) should also be determined from (12).

Once the velocity potential ¢ associated with sloshing is calculated, the hydrodynamic pressure at any
location can be computed from the linearized Bernoulli equation and the total horizontal force acting on the
container is obtained by an appropriate integration of the pressure on the hemispherical wall. The total force can
be also expressed as a summation of the “uniform motion” force Fy and the force associated with sloshing Fg

FU=—pf—Zt—f- (e, -n )dA and FS=—ijt—“’ (e, -n )dA (173)
A A

Using (7) and (11), Fy and Fs are calculated as follows

L nv2 2

F,=p XOR’[ [ sin6 do dz = -[p%—Lj)"((tF M, K@ (17b)
0 -n/2

E=pL RZZR%-Z [d2n—l(t) Y, *R ‘Ci2n ®) an] (17¢)

n=1

where, M,, is the total liquid mass of the half-full horizontal cylinder container and

/2
Y,= [ sin2s0 sin6 do, s=123... (18)

/2

Since the pressure is always normal to the wall of the container, the total hydrodynamic force direction always
passes through the center of the cross-section of horizontal cylinder.

It is possible to develop a simplified version of the above formulation considering only the first term (N=1)
of the series expansion of the potential ¢ associated with sloshing in (11) and (17). Then analytical expressions
for the hydrodynamic pressure on the wall are calculated and the corresponding force becomes

F=F, +FS=-(MWX+ N;W q1J=—MW X-M, §, (19)

where , M,, is the liquid total and My is half the liquid mass and expresses the part of liquid mass associated with
sloshing motion.

3. SOLUTION FOR HARMONIC EXCITATION

The solution is significantly simplified and semi-analytical results may be obtained when the rigid container
undergoes a harmonic motion

X(t)=Ue™, (20)

where U is the velocity amplitude, and o is the angular frequency of the external excitation source. Assuming
steady-state conditions, functions for q, (t) are also assumed harmonic

q,(H=a, e™ @1
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and the following infinite system of linear algebraic equations is obtained
(—(02 [M]—ivm[M]+[K]) {a}=0’ U {y} (22)

In the above system, the square matrix [M], the diagonal matrix [K] and the vector {y) are given by Equations
(16a), (16b) and (16¢c), whereas {a} is the unknown vector with components a, _;,n=1,23... Note that when

U=0 and v=0, the system of algebraic equations (22) is reduced to a homogeneous system (i.e. an
eigenvalue problem), which is identical to the one obtained by Evans & Linton"!. An estimate of the externally
induced sloshing effects on the overall response can be obtained from the computation of the added mass

coefficient C, and a measure of the dissipation mechanism is offered by the dimensionless damping coefficient
C,:

- C,=Re L and C,=Im L (23)
F, F

In the above expressions, Re[ ] and Im[ ] denote the real and the imaginary part of the Fg/Fy ratio respectively.
Considering only the first two terms of the expansion (N=1) closed form solutions can be derived for the mass
and damping coefficients.

4. NUMERICAL RESULTS AND DISCUSSION

In Figures 2 and 3 the corresponding results are shown in terms of the added mass coefficient C, and the
dimensionless damping coefficient C, for a unit-radius half-full horizontal cylinder (R=1) for different values of
external excitation frequencies. Three different values of the damping parameter v are considered, namely 0, 0.34
and 0.68 (g=9.81). Figure 2 shows that for the case of zero damping, the response is characterized by large
increases in the added mass coefficient C, in the vicinity of resonant frequencies. There is a sign reversal in C, at
each resonant frequency. When C,<0 the sloshing force Fs opposes the “uniform motion” force Fy resulting in a
reduction of the total force amplitude. The extreme values of the added mass coefficient close to the resonant
frequencies are significantly reduced when damping is present, and the resonant effect of the higher natural
frequencies almost disappears. The large values of C, for a wide range of excitation frequencies indicate the
significant effects of hydrodynamic sloshing on the overall response. Figure 3 presents the corresponding results
for the dimensionless damping coefficient C,, which exhibits a peak near the first resonant frequency, and much
smaller peaks for the higher resonant frequencies. When the damping parameter value is increased, the peaks
become smaller and smoother.

The response of a honzomal -cylindrical container, with radius R=1m and length L=6m containing a liquid
of density p=1000kgr/m’, under the seismic ground motion of Kozani, Greece, in 1995, is considered (Figure 4).
The linear system of ordinary differential equations is integrated in time by implementing a fourth-order Runge-
Kutta scheme in Matlab programming, and the time step At is chosen equal to 0.005 sec. A truncation size N

equal to 2 is considered in this analysis. Damping is expressed through the damping ratio & =(v/2)y/8R/3ng .

The damping effects are demonstrated clearly in Figure 5, where the time history of the generalized coordinates
qi(t) for zero damping (v=0) and for 10% damping are depicted. The presence of damping results in a significant
attenuation of the q(t) value. Figures 6a and 6b show the forces associated with sloshing (Fs) for a half-full
cylinder subjected to the Kozani earthquake and for damping & equal to 0% and 10%, respectively. Finally
Figures 7a and 7b show the total forces F for the container including sloshing and uniform motion.

5. CONCLUSIONS

A mathematical model is developed for externally induced liquid sloshing in half-full horizontal cylindrical
containers. The velocity potential is split in two parts, a “uniform motion” potential (trivially obtained) and a
potential associate with sloshing. In this configuration, the problem formulation is not separable and the general
solution of the sloshing potential is written as a series expansion of arbitrary time functions and its associated
non-orthogonal spatial functions. Furthermore, viscous damping effects can be taken into consideration through
an appropriate modification of the dynamic free surface boundary condition. The formulation results in a system
of linear differential equations, which is solved numerically.

The present formulation enables the prediction of sloshing effects under any form of external excitation, in a
simple and efficient manner. In the case of harmonic excitation, the results are expressed in terms of the added
force coefficient and the dimensionless damping coefficient. It was found that convergence in terms of truncation

tn
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size is less rapid in the vicinity of resonant frequencies, and that the presence of damping diminishes resonant
effects. Finally, the response of a spherical vessel subjected to a real seismic event is examined, and the total
horizontal force acting on the container is calculated.
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Figure 2: Converged value of C, in terms of external excitation
frequency (w*/g) for N=50, (R=1).
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Figure 3: Converged value of C, in terms of external excitation
frequency (mz/g) for N=50, (R=1).
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ABSTRACT

The present work investigates the response of a half-full spherical pressure vessel (tank)
under earthquake excitation. The fluid motion due to the free surface usually referred to as
“sloshing” is examined in detail with respect to its influence on the response of the
tank/support system, in terms of the base shear force and overturning moment. The present
study adopts a semi-analytical solution of sloshing in spherical vessels, and proposes a
simplified mechanical model to describe the vessel behavior, including the flexibility of its
supports. Two case studies from actual industrial applications are considered. In those
vessels, the importance of including sloshing effects is examined. Furthermore, the maximum
base shear and overturning moment obtained through the direct analysis of a real seismic
event are compared with the corresponding values from a spectral analysis procedure.

Keywords: Sloshing, seismic design, pressure vessel, spherical tank, industrial facilities
design.

INTRODUCTION

The presence of a free surface in partially filled liquid containers allows for fluid motions,
which in turn may influence container’s response and structural integrity in the case of a
strong earthquake motion. This phenomenon, referred to as “liquid sloshing”, is generally
caused by external tank excitation, and due to its importance it has been investigated
extensively in previous research works. In general, past works contributed on the
computation of the sloshing frequencies and the corresponding modes for tanks of various
geometries, as well as on the evaluation of the forces and moments exerted on the tank by the
sloshing hydrodynamic pressure. Among other significant contributions on the seismic
response of liquid storage tanks, it is worth mentioning the works of Housner {1], Haroun and
Housner [2], and Veletsos et al. [3], [4], which form the basis for the API provisions (API
650 - Appendix E) for vertical cylindrical tanks [5]. Moreover, the works of Fisher,
Rammerstorfer and Scharf [6], [7] have contributed towards the provisions regarding sloshing
in vertical cylindrical tanks of Eurocode 8 (EC8 — part 4.3 — Appendix A) [8]. The recent
papers by Malhotra et al. [9] and Pandohi-Mishre et al. [10] describe the application of
Eurocode 8 on vertical cylindrical tanks, and include useful design examples. The reader is
also referred to the review paper of Rammerstorfer et al. [11] for a complete presentation of
the earthquake response of vertical cylindrical tanks. In addition, to the above




analytical/numerical works, notable experimental contributions on this subject have been
reported by [12] and [13].

The above studies have focused on orthogonal and cylindrical (vertical) tanks. On the other
hand, spherical tanks are very common in chemical plants and refineries, and they are
employed as storage vessels for liquefied petroleum gas (LPG), liquid propane, propylene
and LNG. Those tanks are not directly connected to the ground, but there exists a support
system with vertical legs and X-braces (Figure 1).

It is important to note that little information exists regarding the seismic response of
spherical tanks. In an early work, Budiansky [14] has computed the sloshing frequencies of a
spherical tank for arbitrary liquid depth, as well as the tank response under an external
excitation. In that work, Budiansky applied conformal mapping on the spherical
configuration, resulting in an integral equation for calculating the sloshing eigenfrequencies,
eigenmodes, as well as forces and overturning moments. The sloshing frequencies of half-full
spherical tanks and for horizontal cylinders have been calculated by Evans & Linton [15]
using an analytical methodology. The convergence of solution was discussed, and the
computed eigenfrequencies were compared successfully with those reported by previous

researchers.

Yy

Figure 1: Spherical tank with vertical legs Figure 2: Configuration of half-full
and X-braces. spherical container-spherical coordinates.

For design applications, the corresponding American Petroleum Institute (API) standard (API
650) specifies that the tank support design should include sloshing effects, but its guidelines
refer exclusively to vertical cylindrical tanks [5]. The New Zealand Earthquake Engineering
Society has published design recommendations for the seismic design of liquid storage tanks,
including the effects of sloshing [16]. Nevertheless, most of this work was directed towards
the design of cylindrical vertical tanks, and very limited information was provided for
elevated spherical tanks. The recommendations provide the first sloshing frequency for a
spherical vessel and suggest that an equivalent cylindrical tank may be considered to
calculate sloshing forces [16]. Similarly, the corresponding provisions of Eurocode 8 (part 4)

N



are quite extensive for cylindrical (vertical) tanks, but very limited for spherical tanks [8],
adopting the New Zealand recommendations [16].

In a recent paper [17], the authors have extended the methodology of Evans and Linton [15]
to include half-full-tank external excitation, and computed sloshing forces. The present paper
investigates the effects of sloshing on the earthquake response in half-full spherical tanks,
based on a simplified version of the analytical sloshing solution presented in [17]. The tank
response is examined in terms of the resultant base shear force and the corresponding

overturning moment.

GENERAL SOLUTION OF SLOSHING IN HALF-FULL SPHERES

Irrotational flow and incompressible fluid are considered. It has been further assumed that the
tank is non-deformable, and the amplitude of sloshing waves is small. Spherical pressure
vessels are quite thick (to resist to high internal pressure) and, therefore, neglecting shell
deformation is a reasonable simplification. Considering tank excitation in one direction (say
x), these assumptions result to the following governing equation for the total potential Qr:

Vi, =0 Y]

with boundary conditions

2
%(P_T = X at r=R (tank wall) and %(B,T— - gg—g;l =0 at y=0 (free surface) (2)
" 2

where X is the displacement of the rigid tank, R its radius and g is the gravity acceleration
(see Figure 2). The above boundary conditions imply that the velocity at the tank wall equals
the motion of the tank, and that a linearized dynamic boundary condition governs the free
surface behavior. Following analytical solutions for other configurations (the reader is
referred to paper [18] for rectangular tanks and to paper [19] for vertical cylindrical tanks), it
is assumed that the solution consists of two parts: (a) the impulsive part @, i.e. the liquid
follows the tank motion X(t) as a rigid body

@, = X cosy sinf (3)

and (b) the sloshing part @, which represents the fluid motion relative to the tank due to
sloshing, so that
Pr =P, + O 4

The following series solution is assumed for the sloshing part [16], [17]

¢ = “Z[ Q01 1 Py (W) + G r’ Py, (1) Jcosy (5)

n=|

where PI(u) is the associated Legendre function, p=cosf, and the g’s are unknown
functions of time. Applying the boundary conditions, the following form of equations 18
obtained:

M {G,} + K {3} =-X T {v} 6)

rAnse p

I YN IR



where
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2n-1
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_Kmm = Kmm (2m'—'1) RZm—?_ and Kmm = 0 lf m#£n
m=1,23,... n=123,...

and

1
Kmm = _[Pllm-—l (“) P21m-1 (p) dl""
0
1
M,, = [P}, (1) P}, (1) dp (8)
0
i
Yo = [PrW P (W dn
0

If the tank motion X is zero and considering a harmonic solution for the q;’s with respect to
time
q;() =a;, ™ )

the sloshing eigenfrequencies of a spherical vessel are obtained, if non-trivial solutions for
the o;’s are sought. The eigenfrequencies are shown in Table 1.

Modes 1 2 3 4
Eigenfrequencies (rad/sec) 3.9121 7.1939 9.1339 10.705
Table 1: The first four sloshing eigenfrequencies of spherical container (R=1).

It is quite important to note that the eigenvalues depend on the truncation of equation (5) and

this is because the functions employed in equation (5) are not mutually orthogonal. In Figure
3 the variation of the first (fundamental) eigenfrequency ®; is shown in terms of the
truncation size N (n<N). Note that three terms (N=3) are necessary so that a very good
accuracy is achieved. The total force Fr applied by the liquid to the tank is obtained by the
integration of pressure on the tank wall in the direction of the excitation (say direction x).
This force has two components, one “impulsive” Fy, and one “sloshing” Fs:

126 ’.
T o-0-0--0-0--0-0-0--0-9

w, I(g/R)"?

1.!6‘>

- K(X-Xp)

(b)

truncation size (N}

Figure 3: Variation of ©, /4/g/R with respect Figure 4: (a) tank motion and ground
to truncation size N for the spherical container. motion, (b) equilibrium of forces.



E. =F, +F,

Fr=[p, (n-e)dB + [p,(n-e,)dB (10)
B, B,
where
Op dp
=—p —* and =—p =
Py p P Dy p a a0

It is easy to show that the impulsive component is
F=-M, X (12)

where My, is the total liquid mass (M, =2 pzR*), which was actually expected, because in

the impulsive motion every liquid particle follows the motion of the tank. Another important
issue is the location of the above forces. Since the pressure is always normal to the tank wall,
those forces are applied on the center of the tank. This observation is applicable to spherical
tanks filled up to an arbitrary depth (not only half-full) and it is important in order to obtain
the corresponding overturning moment

The above formulation and solution assumes that the motion of the tank X(t) is known. In the
case of a spherical tank supported by a system of legs and X-braces, only the ground motion
Xg(t) is known, whereas X(t) is unknown and should be calculated. The additional equation
required to determine X(t) is the equilibrium of forces at the base: the total horizontal inertia
force Fr is equilibrated by the support force Fy, (Figure 4). This means that

Fo~F,=F -K,-(X-X,)=0 (13)

where Ky is the stiffness of the leg/bracing support system, and X-X, is the relative
displacement of the tank with respect to the ground.

SIMPLIFIED 2DOF MECHANICAL MODEL

The problem formulation is simplified if one term of the series solution is considered only
[equation (5) with n=1] and the liquid-tank system is reduced in a 2DOF system. More
specifically, it is assumed that the sloshing motion of the liquid with respect to the tank is
given by the following approximate expression, instead of equation (5):

¢(r,0,y,t) = —[q, r P/ (cos0) + g, r* P} (cosB)] cosy (14)

Using the above-simplified expression and applying the boundary conditions, the system of
ordinary differential equations (6) reduces to only one equation:

%*‘(g)%:'x (15)

which a linear oscillator equation. The frequency of the oscillator @, =/4g/3R is an

approximation of the first sloshing frequency ®; (Figure 3). Furthermore, a simple closed-
form expression is obtained for the sloshing force:



Fszz_[ 2W)q,=—qul (16)

where M; is half the liquid mass and it is referred to as sloshing mass. It can be shown that
the total force based on one sloshing mode is a good approximation of the corresponding
force assuming the complete solution (see eq.(5)). The equilibrium of the forces implied by
equation (13) needs also be considered. In this equation, the total horizontal force is to be
equilibrated by the elastic forces of the supports and, therefore, the impulsive force should
include the mass of the steel tank. Conducting the appropriate integration for the sloshing part
as indicated by equations (10), (11), the total force is readily obtained:

, L M, .
Fr =F, +F, +Fuu =_(Mw+MsheM)X'_2_—ql (17)

Inserting the above result in equation (13), the following equation is obtained
-M, 4, ~(M, + M, ) X =K, (X-X,) (18)

Equations (15) and (18) constitute a system of linear ordinary differential equations in terms
of q; and X:
Ms QI +Ks ql +1\/15 X=0

. s (19)

M, G, +M,, +Mg, ) X+K, (X-X,)=0
where K = ©M;. Those equations are written in an alternative form, considering the
following change of variables:

u, +X, =q,+X

20
u2+Xg=X 20)

and the final form of the equations becomes

E | R | W L
M{i} + K{u}=-M {1} X

g

where
ml = Ms and mZ = Mw + Mshell - Ms (22)

The above system of ordinary differential equations (21) has a standard form for a 2DOF
structural system with lumped masses.

The model is shown in Figure 5 and it is similar to mechanical models proposed elsewhere
for rectangular and vertical-cylindrical tanks [2], [8],[16]. The second DOF (uy) corresponds
to the so-called “convective” motion and the corresponding mass m; is the difference
between the total moving mass and the sloshing mass. Having computed u; and u; with
respect to time, the forces and the corresponding moments can also be computed.
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NUMERICAL RESULTS

The response of elevated spherical tanks under seismic loading is of particular importance,
because of practical applications in the petrochemical industry. Herein, two case studies are
examined; a LNG terminal and a propylene terminal, both located in Greece. The stress
resultants (i.e. base shear and overturning moment) on the foundation are computed using the
simplified 2DOF model formulation and the ground motion record from a recent Greek
earthquake, the 1995 Kozani earthquake (Figure 6). The base resultants are compared with
the corresponding values when liquid sloshing is not considered. In addition, a spectral
analysis is performed according to the general provisions of the Greek Seismic Code [21],
using the eigenfrequencies obtained in the course of the present work, and the corresponding
stress resultants are also obtained.

First design example

The spherlcal pressure vessel of this example contains propylene with density equal to
553kgr/m’. The vessel has internal diameter and thickness 21216 mm and 43 mm
respectively. The mass of the liquid when the vessel is half-full is 1.38x10° kgr and the mass
of the empty steel tank is 0.48x10% kgr. Twelve (12) column legs with height hy=9.2m
support the vessel, and they are connected with X-braces. The legs are &1160mmx60mm
tubular members, whereas the braces are plate members with rectangular cross-section
250mmx35mm and an effective length L,=8.2 m. To calculate the stiffness of the leg-bracing
system, the legs are considered as fixed-fixed sway columns and each X-brace is considered
active only with its tensile member. Under those assumptions, the stiffness of the leg-bracing
system is calculated as follows

< 12E1 e EA!
E COS2 a, COSZﬂ (23)

=l k=l b

where ElL is the bending stiffness of each leg, EA, is the axial stiffness of each brace, B is the
angle of inclination for the braces (60°, same for all braces) and oy is the horizontal angle
between each X-brace and the earthquake direction. First, the eigenvalues w; and w, and the
eigenmodes {y}| and {y}, of the 2DOF model are calculated from a standard eigenvalue
analysis:

30



[K-o*M] {y}=0 (24)

which is equation (21) with X,=0. The two eigen-periods T, T, are very much apart (5.66sec
and 0.24sec), showing that the sloshing motion is much “slower” than the structural motion
so that the two masses m; and m; are rather uncoupled. Subsequently, the 2DOF model is
analyzed for the Kozani earthquake ground motion, using a standard Runge-Kutta integration
of equations (21). The base shear and the overturning moment are obtained as follows:

Vbase
M, =h V

over

=-m, (ﬁl+xg)—m2 (ﬁz'*')"(g) (25)

base

where h is the elevation of the sphere center with respect to the foundation level. For the
present example h, is equal to 14.32m, and the maximum values of Vi and Moyer are 10.21
MN and 146.2 MNm respectively. The variation of Vi with respect to time is shown in
Figure 7. These values are compared with the corresponding values obtained ignoring
sloshing. In this latter case, the vessel-liquid system reduces to a single-DOF oscillator:

(m +m) 0, +K, O, =— (m +m,) Xg (26)

where, is the DOF of the system. The eigen-period of the system is 0.30sec. Solution of the

above equation for the ground motion of Figure 6 provides the total base shear and the
corresponding overturning moment:

base

MO —p . YO

over (4 base

© __ =3
Viese == (my+my) (u, + X,) @n

and the maximum values of V(O)base and M(O)over are 15.19 MN and 217.5 MNm respectively.
The variation of V%, is also shown in F igure 7. The comparison with the values calculated
from equations (24) shows that sloshing has a beneficial effect on the overall response of the
tank under consideration.

Alternatively, it is possible to estimate the above base shear and moment using a standard
simplified spectral analysis. Having conducted the eigenvalue and analysis, it is
straightforward to compute the maximum force vector for each mode (n=1,2), using the
spectrum of the Greek Seismic Code [21] for the Kozani area (where the ground motion of
Figure 6 was measured). A 2% damping parameter &, is considered for both modes, so that

L

{F} e =M {y}, 2 Su(T,:6)) (28)

n

where

M, ={y}, M {y}, 9
L, ’

M
={v}, M {l}
and So(Th, &) is the spectral acceleration value. Considering a maximum ground acceleration

equal to 0.24g and type B soil conditions, and assuming that the foundation factor, the
importance factor and the behavior factor are all equal to 1, the corresponding values of S,




are 0.25g and 1.12g for two modes respectively. The force vectors that correspond to the two
eigenmodes are combined using the SRSS method (Square-Root-of-the-Sum-of-Squares)
[20], so that the total force vector is computed. Finally, the values of Viae and Mgyer are
computed, equal to 10.25 MN and 146.79 MNm. These values are compared with the more
exact values from equation (25), indicating shows the conservativeness of the spectral
analysis, with respect to the direct integration of real accelerograms.

Second design example .

The second design example consists of determining the base shear and the overturning
moment for a spherical terminal, which contains V.C.M with density equal to 850 kgr/m’.
The vessel has internal diameter and thickness 21200 mm and 36.6 mm respectively. The
mass of the liquid when the vessel is half-full is 1.06x10° kgr and the mass of the empty steel
tank is 0.39x10° kgr. The vessel is supported by eleven (11) column legs with height
h;=7.515m, connected with X-braces. The legs are @945mmx12.5mm tubular members,
whereas the braces are plate members with rectangular cross-section 135mmx28mm and an
effective length Ly=7.735m. Equations (21) are the governing equations of the system. An
eigenvalue analysis is performed first according to equation (24) and the two eigen-periods
are 5.66sec and 0.365sec respectively. Subsequently, a direct integration of the governing
equations (21) is performed so that the response of the system subjected to the Kozani
earthquake is obtained. The variation of Vyas. is shown in Figure 8. In this tank, he=11.3m and
the maximum values of Vs and Moy are 6.02 MN and 68.03 MNm respectively. On the
other hand, if sloshing is ignored, and assuming that the entire mass is impulsive, the
corresponding maximum values of V(O)base and M(O)base are [see equations (26), (27)] 3.84 MN
and 43.39 MNm respectively. The variation of V%, is shown in Figure 8. This shows that
sloshing has a severe effect on the overall tank response. Finally, the tank is analyzed using
the spectral analysis [see equations (28), (29]) with 2% damping, and the maximum values of
Viase and Moyer are 13.13 MN and 148.49 MNm respectively.
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CONCLUSIONS

Based on an analytical series solution of sloshing in half-full spherical tanks, it is possible to
develop a simplified model for the analysis of such tanks under earthquake excitation. Using
this simple formulation, the seismic analysis of two typical vessels is conducted. The results
show that sloshing has a considerable effect on the overall response, especially on the values
of base shear and overturning moment. Furthermore, the results from a spectral analysis are
compared with the results of the present analysis. The present study is of particular interest to
the petrochemical industry, and provides a simple and effective tool for analyzing sloshing
effects in half-full spherical liquid-storage vessels. The results are expected to contribute
towards better understanding of the sloshing phenomenon and towards safer terminal design.
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Abstract.

A semi-analytical mathematical model is developed for sloshing effects in half-full horizontal
cylindrical viscous liquid vessels, under arbitrary longitudinal external excitation. The
velocity potential is expressed in a series form, where each term is the product of a time
function and the associated spatial function. In this configuration, the problem is not separable
and the associated spatial functions are non-orthogonal. Application of the boundary
conditions results in a system of ordinary linear differential equations, which are solved
numerically. The motion of a real liquid gives rise to energy dissipation, which is modeled
through an appropriate modification of the dynamic free-surface condition. Hydrodynamic

forces on the container are calculated for harmonic excitation and for a real seismic event.

Keywords: sloshing, horizontal cylindrical vessel, energy dissipation, seismic response.

1. Introduction

The linear sloshing problem is a typical eigenvalue problem, representing the oscillations of
the free surface of an ideal liquid inside a container. The solution provides the natural
frequencies of fluid oscillation (sloshing frequencies) and the corresponding sloshing modes,
and strongly depends on the shape of the container. For rectangular and vertical-cylindrical
containers the sloshing problem can be solved analytically, using separation of variables [1],

and the corresponding sloshing modes are mutually orthogonal and uncoupled. For other



geometries (e.g. horizontal cylinders or spheres) exact analytical solutions may not be
available, and the use of numerical methods becomes necessary.

Sloshing frequencies of horizontal cylinders filled up to an arbitrary height have been
determined numerically, through the solution of integral equations [2], [3] or using a
variational formulation and Ritz method [4]. Moreover, upper or lower bounds for the values
of sloshing frequencies in horizontal cylinders have been obtained [5], [6]. Generally, sloshing
analysis in horizontal cylinders filled up to an arbitrary height requires a numerical solution.
However, for the particular case of a half-full horizontal cylinder it is possible to develop a
semi-analytical solution, as suggested by Evans & Linton [7] for the eigenvalue-sloshing
problem.

The present work is aimed at calculating sloshing effects in half-full horizontal cylindrical
containers due to external excitation along the cylinder axis, extending the semi-analytical
formulation proposed in [7]. In addition, the present formulation considers viscous effects
through a simplified approach proposed elsewhere [8]. The velocity potential is expanded in
bounded series in terms of arbitrary time functions and their associated non-orthogonal spatial
functions, resulting in a system of ordinary linear differential equations, which is solved

numerically.

2. Theoretical formulation and solution

The half full horizontal cylindrical vessel of radius R and length L (Figure 1) is non-
deformable, and undergoes an arbitrary motion in the direction of the longitudinal axis z with
displacement Z(t). The amplitude of free surface elevation is assumed sufficiently small to
allow linearization of the problem. It is further assumed that the fluid is inviscid and the flow

is described by a velocity potential ®(r,0,zt), which satisfies Laplace equation within the

fluid volume
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where g is the gravitational constant, v is a viscous parﬁmeter, and n=n(r,z,t) is the free surface
elevation. Through the second term in Eq (2), a dissipation mechanism is introduced through
an elegant and efficient manner [8]. Furthermore, @ should satisfy the kinematic conditions at

the container walls:

?:0, atr=R, -1/2<0<12,0<z<L (3)

T

and

Db .

a—=Z(t) at z=0L, -m/2<0<n/2, 0<r<R (4)
Z

Subsequently, @ is decomposed in two parts, as suggested in [9]
O(r,0,zt)=f(zt)+ o(r.0,zt), (5)
where f(z,t) and o¢(r,0,z,t) are the “uniform motion” velocity potential and the potential related

to sloshing respectively. The velocity potential f corresponds to a “rigid body” motion of the

fluid, which follows exactly the external excitation source motion:
: L
£ (24) =200 (Z-E] (©)

and satisfies the Laplace equation and the non homogeneous kinematic conditions at z=0 and
z=L. Then the velocity potential ¢, which represents the relative motion of the fluid particles
within the container due to sloshing, should satisty the Laplace equation within the fluid

region and the following boundary conditions:

2
99 . ,%,8 a—‘”:—i(t)[z-%—) , at 0=+mw/2, r<R,0<z<L @)
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6—:0, atr=R,0<06<n/2,0<z<L. (8)
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and
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—é——=() at z=0,L., -1/2<0<n/2, 0<r<R €)
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A solution for the unknown function ¢ is considered im a series form as

o(r,0,2,t) = i iqg(t) I, (k,r) cos(md) cos(k,z), r<R,-m2<6<mw2,0<z<L  (10)

p=1.3,5 n=0
where q°(t) are unknown arbitrary time functions, k,=pn/L, p=1,3,5,...and I, are the

modified Bessel functions of order n. Due to the nature of the external excitation, the above
expression is antisymmetric in terms of z (longitudinal direction) and symmetric with respect

to the 6=0 plane. The expression of ¢ is rewritten in the form:

o(r,0,z,t) = Z Z[an (t) cos(2n0) I, (k r)+q2n+l(t) cos(2n+1)0 L, ., ( )] cos (kpz) (11)

p=1.3,5 n=0

separating odd and even terms of the series [7]. Substituting Eq (11) into boundary
r/2

condition Eq (8) and applying the integral operator I---cos(2m9) d6 m=0,1,2... the

0

following relations between the even and odd unknown time functions are obtained:

(0=~ ( )er]iijz s (K,R ) @O p=135,... (12)

and

. 1 0 (_ 1 )m-n (_ 1 )H]-Hl
? (0)=- ¥ L. (kR 0.n>1, p=135,.. (13
SO T R)é[m-nﬂ/z m+n+1/2j v (KR ) G - P (1)

Then substituting Eq (11) into boundary condition (7), applying the integral operator

L
I cos(k,z) dz, and using the following identity,
0

1=, (x)-21, (x)+21,(X)-... (14)



one obtains

b D kg ., . 4 s
qo() +v qo(t)~7ql (= KL p=1,3,5,... (15)
and
g g 8 -
an ®+v q2n (t) -—— q2n+l( ) -—— q2n () = VAN n>0, p=1,3,5,... (16)

k)L
Finally substituting Eqs (12) and (13) into Eqs (15) and (16) respectively and after some

mathematical manipulation, the following infinite system of second-order ordinary

differential equations is deduced:
[Mr] {gepev[Me ] {an)+[K ] (q")=-{r"}Z p=1,3.5,... (17)

where [MP] and [KP] are square matrices, {y"} is a vector, with elements

MP = ch™ , b Lyt (K,R), 1=0,12,...,m=0,1.2,..., p=13.5,... (18)
mn+1/2 m+n+1/2
1 0 .. 0]
1 1 0 .. ...0
. kpn ,
[K ]=7g12n(kpR) p=13.5,... (19)
0 01 1 0
0 0o 1 1|
Y = 4,” I, (k,R), vi=—-1, (k,R) n=0,1,2..., p=1,3.5,... (20)
kL P kL P

and {q"} is the unknown vector with components qj_,,(t), m=0,1,2,... Solution of (17) is
performed through a typical time-marching numerical scheme, and leads to the calculation of
functions q5_,,(t) and their derivatives.

Once the velocity potential ¢ is calculated, hydrodynamic pressure is computed from the

linearized Bernoulli equation and then the total horizontal force acting on the container is



obtained. The total force can be expressed as a summation of the “uniform motion” force and

the force associated with sloshing
of g
FU=—p£5; (e,-n )dA and Fs=—p£§ (e,-n )dA 1)

respectively, where A corresponds to the “wet” area of the two ends of the container (z=0,
z=L) and n the outer unit vector normal to A. An esti;nate of the externally induced sloshing
effects on the overall response is offered by the added mass coefficient C,, whereas the
dissipation mechanism effects are represented by the dimensionless damping coefficient Cy:
C,=Re [ES—:I and C,=Im [ES—-} (22)
I:;U U
where Re[ ] and Im[ ] denote the real and the imaginary parts of the Fs/Fy ratio respectively.
The solution is significantly simplified and semi-analytical results may be obtained when the
rigid container undergoes a harmonic motion. In this case the system of ordinary differential

equations is reduced into a linear algebraic system

3. Numerical results and discussion
Some selected results for a half full cylindrical vessel with R=1 and L=n (k,=1) subjected to

harmonic and arbitrary longitudinal excitation are presented for the first longitudinal mode

p=1. Damping is expressed through the damping ratio §S=L where o= kg LK) is
204 4 I(kR)

an approximation of the first resonant frequency. Three different values of the damping ratio
Es=0%, 5% and 10% are considered which correspond to damping parameter v equal to O,
0.25 and 0.50 respectively.

In Figures 2a and 2b, the values of C, and C, are plotted in terms of the external excitation

frequency (®’R/g). For v=0 the areas of resonant frequencies are characterized by large

increases in the C, value. When C, <0 Fg is out-of-phase with the cylinder displacement (i.e.
6



the “uniform motion” force Fy) resulting in a reduction of the total force. The C, values close
to the resonant frequencies are significantly reduced when damping is present, and the
resonant effect of the higher natural frequencies almost disappears. The large values of C, for
a wide range of excitation frequencies indicate the significant effects of hydrodynamic

sloshing on the overall response. The C, values exhibit a peak near the first resonant

frequency, and much smaller peaks for the higher resonant frequencies. When damping is
increased, the peaks become smaller and smoother.

The response of the horizontal-cylindrical container is also calculated under a typical seismic
event with maximum ground acceleration 0.21g (Kozani, Greece, 1995). The ODE system
(18) is integrated through a fourth-order Runge-Kutta scheme in Matlab programming, with a
time step At=0.005 sec. Figures 3a and 3b show the forces associated with sloshing Fs for &s

0% and 10%, respectively, corresponding to the first longitudinal mode (p=1).
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Figure 1: Configuration of half-full horizontal cylindrical container under
longitudinal excitation Z(t).
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Figure 2: Ca (a) and Cv (b) values for the first longitudinal mode (p=1) in terms of
external excitation frequency ((ozR/g) (R=1, L=m).
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Figure 3: Forces associated with the first sloshing mode (p=1) for a half-full
horizontal cylinder of radius (R=1, L=n) without (a) and with (b)

damping effects (Es=10%).
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